

医学技术研究院 Institute of Medical Technology

Vision-to-Concept and Language Tokenizer

Hangzhou He

Lei Zhu

Xinliang Zhang

Shuang Zeng

Qian Chen

Yanye Lu

Medical Intelligence Laboratory (MILab)

Imageomics-AAAI-25 - Philadelphia, USA

OUTLINE

- 1. Introduction
- 2. Vision-to-Concept Tokenizer (AAAI 2025)
- 3. Vision-to-Language Tokenizer (CVPR 2024)
- 4. Summary

Deep Neural Networks

Deep learning has advanced the field of artificial intelligence with Deep Neural Networks (DNNs), which learn **feature representations** from data.

DNNs in Vision Tasks

Supervised training of DNNs with a lot of labeled data has proven highly effective for visual understanding and generation tasks.

classification segmentation

Image & video generation

^[1] ImageNet: https://image-net.org/

^[2] Segment Any Thing Model: https://segment-anything.com/

^[3] Sora: https://openai.com/index/sora/

The Black-Box Problem

Can I explain the decision-

Can I teach the model to leverage concepts like *yellow headed*?

Can I know what is encoded in that feature and learn from representation?

The Black-Box Problem

Can I teach the model to use concepts like *yellow headed* for classification?

Can I explain the decision-

The answer is usually No!!!

Can I know what is encoded in that feature and learn from models?

Looking for Explanation Interface

Can we represent this feature in a human-understandable way?

Language as a Bidirectional Interface

Building Vision Tokenizers

Vision Encoder

Global:

CLIP, BioCLIP, ···

Local:

VQ-GAN

Codebook

visual concepts, bio/medical terminology tokens of language models,

9

Concept Codebook Generation

$$\{adj_1,adj_2,\cdots,n_1,n_2,\cdots\}$$

$$\{adj_1-n_1,\cdots,adj_i-n_j,\cdots\}$$

$$\{pp_1-adj_1-n_1,pp_2-adj_1-n_1,\cdots\}$$

Concept Vocabulary | Construct vocabulary based on word frequency from Web Corpus

atomic: white, fur, happy, ...

bigram: white fur, high tree, ...

trigram: with white fur, ...

Google Research

Concept Codebook Generation

Concept Vocabulary

$$\{adj_1,adj_2,\cdots,n_1,n_2,\cdots\}$$

$$\{adj_1-n_1,\cdots,adj_i-n_j,\cdots\}$$

$$\{pp_1-adj_1-n_1,pp_2-adj_1-n_1,\cdots\}$$

Vision-Language Models (VLMs)

class names

unlabeled images

select class-related images from

large-scale unlabeled images

using vision-language models

target class

Passionflower

images found by pretrained VLMs

Concept Codebook Generation

Concept Vocabulary

$$\{adj_1, adj_2, \cdots, n_1, n_2, \cdots\}$$

$$\{adj_1-n_1,\cdots,adj_i-n_j,\cdots\}$$

$$\{pp_1-adj_1-n_1,pp_2-adj_1-n_1,\cdots\}$$

Codebook Generation

red	iris	soil	pink			
grass	blue	bee	stem			

code with high activation frequency

update code frequency based on cosine similarity between each image and all vocabulary

Vision-Language Models (VLMs)

class names

unlabeled images

Vision-to-Concept Tokenizer

images from same class

Vision-to-Concept Tokenizer

Discovering Concepts from Images

images from same class

VLM Vision Encoder

top-5 closest concepts

VLM Text Encoder

codebook

red	iris	soil	pink			
grass	blue	bee	stem			

- black head
- orange wing
- orange breast
- gray underpart
- black wing

Polar bear

- white bear
- white enclosure
- white animal
- cold zoo
- white fur

Discovering Concepts from Images

images from same class

VLM Vision Encoder

top-5 closest concepts

VLM Text Encoder

codebook

red	iris	soil	pink			
grass	blue	bee	stem			

Hot pot

- hot bowl
- hot dishes
- red soup
- hot soup
- black pot

Carousel

- single rider
- carnival
- happy spin
- happy rider
- young rider

Concept Bottleneck Models (CBMs)

CBMs decompose a DNN into two functions:

- 1. A concept encoder $g(x) = \hat{c}$ predicting concepts from the input features
- 2. A label predictor $f(\hat{c}) = \hat{y}$ predicting task labels from the concepts

[1] Concept Bottleneck Models (ICML2020)

Building CBMs with V2C Tokenizer

With V2C Tokenizer, we can build CBMs without concept labels!

Building CBMs with V2C Tokenizer

Average classification accuracy (%) on 10 datasets

Method	1-shot	2-shots	4-shots	8-shots	16-shots	All
ViT-L/14	51.8	65.3	72.3	77.1	81.6	86.9
CBM	57.8	64.0	71.1	75.8	79.7	85.6

Scaling with the number of unlabeled images

Tasks	1k	40k	80k	120k	160k	200k			
bird	80.3	81.4	81.6	81.9	82.2	83.0			
texture	73.1	76.3	76.8	77.4	77.6	78.0			

Vision-to-Language Tokenizer

A Frozen Large Language Models (LLMs) can use the linguistic representation of images for directly visual understanding and generation!

Global and Local Codebook Generator

Visual Understanding and Generation

Input: Tokens(),

), output: French bulldog.

Input: Tokens(

), output: rock beauty.

Input: Tokens(

), output:

Generate a caption sentence based on words describing an image.

Input: Tokens(on a hill side.

), output: A man in a red shirt and a red hat is on a motorcycle

Input: Tokens(cake.

****** LLM

), output: A woman wearing a hair net cutting a large sheet

Input: Tokens(

→ Prediction

), output

(1) N-Way K-shot Classification

Answer the question with a single word based on the condition.

Condition: Tokens(

Question: What is this person doing?

Answer: skiing.

Condition: Tokens(

Ouestion: What does the truck on the

left sell?

Answer:

(2) Image Caption

(3) Visual Question Answering

(4) Image Denoising

Visual Understanding and Generation

> Few-shot Classification

Method	#Tokens	Task Induction: N-way K-shot: #Repetitions:		√ 2-1 0	√ 2-3 0	√ 2-5 0	√ 2-1 1			Avg	5-1	√ 5-1 0	√ 5-3 0	√ 5-5 0	√ 5-1 1	√ 5-1 3	√ 5-1 5	Avg
Frozen [47]	-	-	1.7	33.7	66.0	66.0	63.0	65.0	63.7	51.3	0.9	14.5	34.7	33.8	33.8	33.3	32.8	26.3
LQAE [25]	256	GPT-3.5	1.5	35.2	68.2	69.8	68.5	68.7	65.9	54.0	1.0	15.7	35.9	36.5	31.9	36.4	45.9	29.0
SPAE [54]	5	GPT-3.5	5.3	77.2	84.4	86.0	79.4	77.2	77.1	69.5	-	-	-	-	-	-	-	
SPAE [54]	5	PaLM-2 (340B)	32.2	84.0	88.5	88.4	85.1	83.6	82.4	77.7	23.6	64.2	68.0	69.9	63.4	62.0	60.2	58.8
Ours	5	LLaMA-2 (7B)	34.2	73.1	89.0	93.4	79.6	80.6	79.1	75.6	36.2	54.6	88.6	91.1	70.7	72.8	74.4	69.8
Ours	5	LLaMA-2 (13B)	44.4	77.9	91.9	94.4	81.5	82.8	82.0	79.3	45.4	69.6	89.9	91.3	75.8	75.7	77.2	75.0
Ours	5	LLaMA-2 (70B)	41.7	87.1	94.8	96.1	88.9	89.2	89.1	83.9	45.4	81.5	92.3	93.0	85.7	86.1	86.3	81.5
SPAE [54]	21	PaLM-2 (340B)	27.9	84.8	92.5	92.6	84.8	85.2	85.4	79.0	20.2	65.1	73.7	74.3	66.4	67.0	66.3	61.9
Ours	21	LLaMA-2 (7B)	36.5	76.3	91.2	95.3	84.0	84.4	83.7	78.8	37.1	44.8	91.8	94.0	73.9	82.2	85.3	72.7
Ours	21	LLaMA-2 (13B)	48.7	73.1	92.4	95.7	80.9	83.8	82.0	79.5	42.1	62.7	93.0	94.5	72.8	79.6	82.0	75.2
Ours	21	LLaMA-2 (70B)	46.5	89.1	96.9	97.8	91.4	92.7	92.9	86.7	45.0	79.7	94.9	95.6	89.3	90.7	90.2	83.5

> Caption & VQA

A dog is sitting in front of a computer.

A group of people in a kitchen.

A picture of a sign that says stop.

A bathroom with a bathtub and shower.

Q1: What food item is shown?
Pizza Burger

Q2: What country did this food originate from?

Italy Ja

Q3: What is the leafy substance?

Basil Lettuce

Reconstruction & Generation

nput VQ-GAN LQAE SPAE Ours

Input VQ-GAN LQAE

SPAE O

Ours

Summary

- 1. Language as a Bidirectional Explainable Interface for vision tasks.
- 2. V2C and V2L Tokenizer to get linguistic representations of images.
- 3. Efficient to build and Interpretable and for use.

pretrained VLMs
unlabeled images
frozen LLMs

general & fine-grained visual concepts

